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Even in clonal cell populations and under the most uni-
form experimental conditions, considerable variation is

observed in the rates of development, morphology and the
concentration of each molecular species in each cell. The
molecular-level phenomena that produce these differences
are deeply rooted in the statistical mechanical behavior of
so-called ‘small’ (or nanoscale) chemical systems, where
concentrations of reacting species are extremely low and,
consequently, fluctuations (noise) in reaction rates are large.
Many genetic regulatory reactions occur at just such low
concentrations. Genetic regulatory circuit designs use redun-
dancy, feedback loops and other features to produce the
needed determinism in outcome for circuits constructed from
such inherently noisy elements. Operational reliability in
regulation is particularly crucial to the development of
complex metazoan organisms (see below). On the other
hand, cells can also exploit noise in some developmental
switch circuits to deliberately introduce indeterminism
into the switching and randomize phenotypic outcomes.
Diversity introduced in this manner is commonly found in

bacterial and yeast responses to environmental stress and in
bacterial virulence mechanisms that vary surface features
to avoid host cell responses (Table 1). Random variations
in eukaryotic cell developmental lineages1 can be produced
by similar mechanisms.

In this review, we focus on the cell to cell variations in the
concentration of regulatory molecules that arise from internal
cellular processes rather than from differing environments.
These variations are commonly observed as irreducible cell
to cell concentration differences in well-stirred cultures of
single-cell organisms. (In tissue cultures, uniform extracel-
lular environments are virtually impossible to achieve.) There
are several internal sources of regulatory noise. For example,
there is inevitable statistical variation in the random parti-
tioning of small numbers of regulatory molecules between
daughter cells when cells divide. Many regulatory molecules
are present in bacterial cells at extremely low concentrations
– anywhere from a few tens to a few hundred molecules
per cell2. Thus, in random partitioning of, say, 50 molecules
between equal-sized daughters, 6% of the daughters will
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Many molecules that control genetic regulatory circuits act at extremely low intracellular concentrations.
Resultant fluctuations (noise) in reaction rates cause large random variation in rates of development,
morphology and the instantaneous concentration of each molecular species in each cell. To achieve 
regulatory reliability in spite of this noise, cells use redundancy in genes as well as redundancy and extensive
feedback in regulatory pathways. However, some regulatory mechanisms exploit this noise to randomize
outcomes where variability is advantageous.

It’s a noisy
business!
Genetic regulation at the nanomolar scale



receive fewer than 19 molecules and 6% will receive more
than 30 – a sufficient difference to have regulatory conse-
quences for some regulatory reactions.

A less obvious but more important cause of cellular vari-
ations is the distinctive statistical properties of regulatory
chemical reactions that involve a small number of reaction
centers and slow reaction rates. Regulation of bacterial gene
transcription, for example, predominantly involves reactions
of small intracellular populations of one to three regulatory
species. These bind to the promoter region of a given gene,
and there are generally two or less copies of the gene in a
growing bacterial cell. Even at fully activated bacterial
promoters, the average time between transcript initiations at
each promoter can be many seconds and the distribution of
intertranscript times is highly skewed around the average.
Detailed consideration of the statistical properties of tran-
script initiation and translation suggests that proteins are
ultimately produced from an activated promoter in short
bursts of variable numbers of proteins, and that the bursts
occur at random time intervals, both in bacterial3 and
eukaryotic4 cells. Stochastic gene expression has been
observed directly in eukaryotic cells5–8. Protein production
from eukaryotic genes is erratic and bursty as in prokary-
otes, but with longer average intervals between bursts4.

Stochastic outcomes at regulatory switch points
A particularly interesting case occurs when two indepen-
dently produced regulatory proteins are involved in the
competitive control of a developmental switch that selects
between alternative pathways. Because the independent,
stochastic temporal patterns of production of each regulatory
protein can vary widely from cell to cell, the pathway selec-
tion by the competitively regulated switch can be random.
The probabilities of selecting each pathway will depend on
the stochastic properties of the gene expression mechanisms
and the design of the switch circuit9. Cells can take advantage
of stochastic expression of the regulatory proteins to ran-
domize the regulatory outcome – the pathway choice – using
appropriately designed regulatory circuits. The simple cross-
repressive configuration in Fig. 1 illustrates how this phe-
nomenon can produce subpopulations expressing alternative
phenotypes, even in genetically homogeneous populations
in identical environments. In the example shown, competi-
tive autoregulating feedback loops can lock the cell into
one or another pathway with some fraction of the cells, by
chance, taking each path. In such systems, environmental
signals can act on the parameters of the regulatory circuit
to bias the probabilities of path choice under different
conditions. Organisms exploit this mechanism to achieve
diversity and increase the likelihood of species survival
over a wide range of environments. Two examples of such
a mechanism are the phage l lysis–lysogeny decision cir-
cuit9 (see below) and the networks controlling Bacillus
subtilis commitment to competence and sporulation10. 

Another stochastic bistable genetic regulatory mechanism
is the random inversion of DNA segments used in many
organisms to produce subpopulations of distinct pheno-
types11. Table 1 shows a small sample of well-known cases
of bistable regulatory mechanisms used in genetic circuits
that produce stochastic phenotype outcomes. These stoch-
astic bistable switching mechanisms are common virulence
mechanisms in pathogenic organisms. For example, ran-
dom alteration of proteins on the bacterial surface or in
external features such as flagella can aid in avoidance of
the host’s immune response.

Common features of the dynamics of these stochastic
regulatory switches that randomly select among several
alternative pathways include: (1) transient, low-level expres-
sion of key regulatory proteins; (2) stochastic progress
toward pathway commitment as concentrations of the
controlling proteins in each cell change from moment to
moment, so that there is a transient period of partial (i.e.
reversible) commitment before a definitive choice eventu-
ally emerges9; and (3) multiple feedback loops that re-
inforce the activation of the selected path and repression
of rejected alternative(s). 

Kinetics of stochastic regulatory circuits
Conventional kinetics does not model statistics of regulatory
systems that produce probabilistic outcomes, such as the
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FIGURE 1. Bistable regulatory circuit

(a) Two promoters, coordinately controlled by protein A, produce mutually
repressive proteins B and C. The system is bistable, so that either B or C, but not
both, can accumulate to activate any downstream pathways they respectively
control. (b) The number of cells (indicated by depth of shading) with various
numbers of molecules B and C. Prior to activation of transcription of genes b and
c all cells are at the {no A, no B} position. After A initiates transcription, short
term, independent bursts of B and C are produced. By chance, in some cells B
will rise rapidly and repress further C production; in others, C will ‘win’. In the
case illustrated, circuit parameters favor C so that only a minority of cells end
up with a high level of protein B. Wide dispersion of the concentration of the
‘winning’ protein results from the erratic nature of gene expression.
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TABLE 1. Competitive reactions controlling the expression of alternative genes

Organism Mechanism Function Ref.

Escherichia coli Pap system Differential methylation of alternative Lrp Phase variation in pili expression, affecting virulence 36
(leucine-responsive protein) binding sites

E. coli Fim system Invertible DNA segments Phase variation in type I pili, affecting virulence 37
Phage Mu Invertible DNA segments Phase variation in type I pili, affecting virulence 38
Salmonella typhimurium Hin system Invertible DNA segments Phase variation in flagellin alters antigen response 38
Moraxella bovis Invertible DNA segments Phase variation in pilin alters antigen response 39



ReviewsGenetic regulatory circuitry

TIG February 1999, volume 15, No. 2 67

stochastic switching mechanisms discussed above, and might
not even describe the average behavior of such systems
correctly12,13. For these cases, a stochastic kinetic analysis14

can be used to predict the behavior of systems that are
probabilistically regulated and might permit improved
exploitation of information in the statistics of phenotypic
outcomes. Analytical resolution of the resulting systems of
stochastic reaction equations is only practical for simple
reaction systems. The so-called ‘Langevin approach’ for
approximation of the effect of fluctuations has been used
to model the microscopic kinetics of stochastic regulatory
systems, but this practice is theoretically unsound15 and
can yield invalid predictions for bistable systems16. How-
ever, the Monte Carlo simulation algorithm described by
Gillespie14 does provide valid numerical solutions for com-
plex systems of coupled stochastic reactions. Stochastic
switching in the phage l lysis–lysogeny decision circuit
(Fig. 2) has been analyzed using stochastic kinetics and the
Gillespie algorithm9 to show in detail how initially homo-
geneous cell populations can partition randomly into distinct
phenotypic subpopulations9. Host-cell hunger and higher
numbers of phage particles infecting the cell bias the deci-
sion circuit to produce a higher percentage of lysogens.

How do cells achieve regulatory determinism?
In spite of the randomness in basic regulatory mechanisms
discussed above, many regulatory pathways in cells have
highly predictable outcomes. The strategies that cells use to
ensure that critical proteins are expressed when needed, in
spite of infrequent and stochastic gene expression, include:
(1) population transcriptional cooperation (i.e. it is not 
necessary for every cell in a population to make all the
gene products)4; (2) checkpoints to assure that cascaded
events are adequately synchronized17–19; and (3) widespread
redundancy in genes20–22 and in regulatory pathways23,24. 

Even in uniform conditions, normal fluctuations in pro-
tein production can be large, relative to the regulatory thresh-
olds that control the expression of downstream genes. One
consequence is wide variations from cell to cell in the
‘switching time’ for the controlling protein to activate the
genes it controls3. Without a coordinating mechanism, these
timing variations will cause errors in synchronization of
cellular functions when complex networked signal paths
control the sequencing of cellular functions. One mecha-
nism to provide coordination is provided by regulatory
checkpoints that halt regulatory cascades until conditions
for further progress (e.g. availability of essential nutrients,
external environmental signals or completion of precursor
cellular events) are satisfied17–19. Checkpoints assure the
orderly execution of cellular activities, but the time required
to execute cascaded functions can still vary widely between
cells. Thus, check points yield certainty in outcome, but not
certainty in the timing of regulatory events. A common
example is the random distribution of generation times of
cells in growing cell cultures that causes progressive desyn-
chronization of initially synchronized cell populations25,26. 

Development of large metazoans from egg to adult
requires the highly reliable execution of very large numbers
of developmental processes, with correct timing, sequencing
and spatial positioning. The regulatory processes controlling
this development must act predictably, in spite of large fluc-
tuations in the function of elemental regulatory mecha-
nisms and fluctuations in environmental conditions. The
reliability requirement for individual somatic developmental
processes depends on the function’s criticality for production

of a successful adult. For example, regulatory processes early
in embryonic development that are prerequisites for exten-
sive downstream cell lineages, and processes whose failure
might allow dangerously uncontrolled cellular proliferation,
have to be particularly reliable21. Thus, regulatory circuit
designs and the molecular details that determine kinetic
parameters must be under selective pressure for reliable
and robust operation (including robustness to large vari-
ations in the organism’s normal external environment). 

Several complementary strategies can be combined to
construct a reliable regulatory system from noisy bio-
chemical elements and inherently mutable genes. Dynamic
stability in the regulatory circuit designs results principally
from the exploitation of redundancy and feedback23,27.
Redundancy is applied both at the level of individual com-
ponents (i.e. genes21) and through parallelism and inter-
linking in the control pathways, so that regulatory net-
works are more reliable than their parts27,28. A common
genetic criterion for functional redundancy between two
genes is that single gene mutations have little phenotypic
effect while mutation of all paralogues produces a strong
effect21,29. This test does not imply that redundant genes
are necessarily genetic duplicates. Indeed, genes with redun-
dant or overlapping function but unrelated sequences are
well known30. 

FIGURE 2. Phage λ lysis–lysogeny decision circuit

Simplified version of the phage l decision circuit that determines whether infected Escherichia coli
cells follow the lytic or lysogenic pathway. Bold horizontal lines indicate stretches of double-stranded
DNA. Arrows in genes indicate the direction of transcription. The boxes R1–R3 indicate non-genetic
protein reaction subsystems. The three operator sites, OR1–R3, of the ‘l switch’ implement a concen-
tration-dependent ‘logic’, controlling promoters PRM and PR. Cro and CI dimers bind to the three sites
with different affinities and in opposite order to control the activation level of the PRM and PR promot-
ers40,41. The CI dimer acts as either a repressor or activator of promoter PRM, depending on its concen-
tration. The result is a mutually exclusive locking mechanism, so that either PRM or PR ends up being
activated with the other promoter locked off. Strong production of CI relatively soon after infection is
necessary for locking on the PRM loop to select the lysogenic pathway. This occurs only when the strong
promoter PRE is activated by CII to ‘jump start’ CI production. Degradation of CII is inhibited by CIII, so
production of CIII increases the probability of CI ‘winning’ the race. Environmental signals influence
the outcome by affecting the rate of CII degradation. Due to the stochastic character of protein pro-
duction and the other reactions involved, both the lytic and the lysogenic outcome can occur with
some probability, so that two alternative phenotypes result. 
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Reliability through redundancy
In the 1940s and 1950s, the notion that there are genetically
specified, self-stabilizing capabilities in developing organ-
isms was recognized and characterized as ‘canalization’29.
In the 1950s, redundant genes were suggested as a possible
mechanism for this genetic capacity to buffer development
pathways against mutational or environmental pertur-
bations31. Recently, analysis of the connection between
genetic redundancy and reliability has focussed largely on
conditions for the evolutionary stability of redundant
genes21,22, with general agreement that the redundancy pro-
vides some sort of ‘back up’ for somatic development func-
tions30. The dramatic increases in chromosome size at the
prokaryotic– eukaryotic and the invertebrate–vertebrate
evolutionary boundaries are attributed to chromosome
duplications that provided the opportunity to create the
redundant genetic network designs necessary for reliable
regulatory operations20,32. After a gene is duplicated, several
things can occur that lead to maintenance of the duplication:

(1) The duplication can provide a fitness advantage owing
to increased regulatory reliability and, hence, be preserved.
(2) Mutations in the duplicate gene can change its function
and the fitness benefit of this new, or added, function causes
the gene to be preserved. (3) Duplication is initially retained
owing to reliability benefits, and then further opportunistic
optimization occurs as beneficial mutations add functions to
both of the duplicate genes. Extension of the range of
response is an example. One of the duplicates could become
slightly better for growth at higher temperatures, the other
slightly better for lower temperatures, so that the range of
temperature coverage is extended with net increase in fitness.

Interestingly, the extensive redundancy in networked
genes and the extensively interlinked and redundant
genetic control pathways, in fact, resemble standard engi-
neering approaches for design of high-reliability systems
using unreliable or noisy components33. This suggests that
we should evaluate genetic regulatory networks using
engineering methods routinely applied to reliability analysis
of complex physical systems33. This approach to reliability
analysis requires the consideration of the potential failure
patterns of the regulatory network and not simply of indi-
vidual genes or sets of redundant genes. The stochastic
characteristics of nanoscale regulatory chemistry cause ran-
dom variations in regulatory effectiveness for genetic links
that are functioning perfectly normally3. Regulatory signal
failures will always occur in individual links with some
probability. However, the reliability of signal transmission in
genetic networks will increase predictably with redundancy3.
Addition of other independent and parallel regulatory path-
ways involving different gene products can further increase
the reliability of a regulatory network’s performance.
Figure 3 illustrates the dramatic increases in overall link
reliability from parallel redundancy. Although the simple
examples in Fig. 3 demonstrate the benefits of redundancy,
quantitative analysis of particular genetic networks is
complex because the statistical characteristics of gene
expression are determined by the stochastic properties of the
molecular mechanisms controlling the expression of each
gene3. Regardless of the statistical details, however, networks
with redundant elements will perform more predictably
and with less variance in outcome than non-redundant net-
works of the same elements owing to the statistical inde-
pendence of variations in the different chemical reactions.
In the small number of regulatory networks where mol-
ecular mechanisms are relatively well known, the statistics
of operation of each mechanism can be estimated and the
effects of redundant components on the robustness of genetic
network performance can be analyzed. Given the com-
plexity of even small genetic networks, the use of simulation
techniques3,34 is necessary for such an analysis.

Redundancy affords resilience in genetic network perfor-
mance both to gene mutations and to the short-term, tran-
sient regulatory failures caused by erratic protein production.
Figure 3(e) illustrates how mutations in one or more of the
genes in a redundant regulatory network can increase the
probability of failure of the network. This phenomenon
results from the statistical character of the robustness afforded
by redundancy against ‘outages’ in a regulatory link: (n21)-
fold redundancy will always provide less reliability than 
n-fold redundancy. For low levels of redundancy, mutations
can increase the probability of failure of the regulatory
network significantly during development, so that a frac-
tion of the population exhibits a mutant phenotype; that
is, there is partial penetrance of the mutant phenotype.

FIGURE 3. Reliability analysis

A highly simplified reliability analysis shows that even simple redundant con-
figurations provide high payoff in regulatory link reliability. (a) A single, genet-
ically coupled link3 where effector B (controlled by A) controls the downstream
gene c. Assume the statistics of operation of the link are such that a single
gene is capable of producing an effective signal (i.e. the link is operational)
with probability P = 0.90. (b) A link of two genes b and c in series is only oper-
ational if both genes are operational, so the reliability is 0.81. (c) A parallel
configuration will only fail if both genes fail and so has reliability 0.99. (d)
With the same assumptions, two redundant, homozygous diploid genes are
operational if one out of the four genes is operational, so the reliability is
0.9999. (e) The redundant configuration also decreases sensitivity to individ-
ual mutations. Here, two mutations producing a configuration AaA9A9 in series
with configuration BbB9B9 still has a reliability of 0.998.

A C

cb

B(a)

(b) Two haploid genes in series

(c) Diploid genes

(d) Redundant diploid genes

(e) Redundant diploid genes in series

B

A
A

A′

A
A

BA

R = P 0.90

R = P2 0.81

R = 1 – Q2 0.99

R = 1 – Q4 0.9999

R = (1 – Q4)2

Wild-type, homozygotic
in A, A′, B, B′

0.9998

R = (1 – Q3)2

Heterozygotic
in A, B

0.998

A

 
Probability that the link is operational
 
Reliability i.e. probability that a link network is operational

A

A′

A′
A′

B

B

B′
B′

P
Q = 1–P      Probability that the link network is not operational
R



ReviewsGenetic regulatory circuitry

TIG February 1999, volume 15, No. 2 69

References
1 Sternberg, P.W. and Felix, M.A. (1997) Evolution of cell

lineage. Curr. Opin. Genet. Dev. 7, 543–550
2 Guptasarma, P. (1995) Does replication-induced transcription

regulate synthesis of the myriad low copy number proteins of
Escherichia coli ? BioEssays 17, 987–997

3 McAdams, H. and Arkin, A. (1997) Stochastic mechanisms in
gene expression. Proc. Natl. Acad. Sci. U. S. A. 94, 814–819

4 Ross, I.L. et al. (1994) Transcription of individual genes in
eukaryotic cells occurs randomly and infrequently. Immun.
Cell Biol. 72, 177–185

5 Ko, M.S.H. (1992) Induction mechanism of a single gene
molecule: stochastic or deterministic. BioEssays 14, 341–346

6 Elliott, J.I. et al. (1995) Random activation of a transgene
under the control of a hybrid hCD2 locus control region/lg
enhancer regulatory element. EMBO J. 14, 575–584

7 Zlokarnik, G. et al. (1998) Quantitation of transcription and
clonal selection of single living cells with beta-lactamase as
reporter. Science 279, 84–88

8 Chelly, J. et al. (1989) Illegitimate transcription: transcription
of any gene in any cell type. Proc. Natl. Acad. Sci. U. S. A. 86,
2617–2621

9 Arkin, A. et al. (1998) Stochastic kinetic analysis of
developmental pathway bifurcation in phage l-infected 
E. coli cells. Genetics 149, 1633–1648

10 Grossman, A.D. (1995) Genetic networks controlling the
initiation of sporulation and the development of genetic
competence in Bacillus subtilis. Annu. Rev. Genet. 29, 
477–508

11 Dorman, C.J. (1995) DNA topology and the global control of
bacterial gene expression: implications for the regulation of
virulence gene expression. Microbiology 141, 1271–1280

12 McQuarrie, D.A. et al. (1964) Kinetics of small systems II. 
J. Chem. Phys. 40, 2914–2921

13 Zheng, Q. and Ross, J. (1991) Comparison of deterministic
and stochastic kinetics for nonlinear systems. J. Chem. Phys.
94, 3644–3648

14 Gillespie, D.T. (1977) Exact stochastic simulation of coupled
chemical reactions. J. Phys. Chem. 81, 2340–2361

15 Van Kampen, N.G. (1992) Stochastic Processes in Physics and
Chemistry. North-Holland

16 Baras, F. et al. (1996) Microscopic simulation of chemical 
bistability in homogeneous systems. J. Chem. Phys. 105,
8257–8261

17 Hartwell, L.H. and Weinert, T.A. (1989) Checkpoints: controls
that ensure the order of cell cycle events. Science 246, 629–634

18 Kaufmann, W.K. and Paules, R.S. (1996) DNA damage and cell
cycle checkpoints. FASEB J. 10, 238–247

19 Wells, W.A.E. (1996) The spindle-assembly checkpoint: aiming
for a perfect mitosis every time. Trends Cell Biol. 6, 228–234

20 Bird, A.P. (1995) Gene number, noise reduction and biological
complexity. Trends Genet. 11, 94–100

21 Thomas, J.H. (1993) Thinking about genetic redundancy.
Trends Genet. 9, 395–399

22 Nowak, M.A. et al. (1997) Evolution of genetic redundancy.
Nature 388, 167–171

23 Weintraub, H. (1993) The MyoD family and myogenesis:
redundancy, networks, and thresholds. Cell 75, 1241–1244

24 Kerszberg, M. (1996) Accurate reading of morphogen
concentrations by nuclear receptors: a formal model of
complex transduction pathways. J. Theor. Biol. 183, 95–104

25 Plank, L.D. and Harvey, J.D. (1979) Generation time statistics
of Escherichia coli B measured by synchronous culture
techniques. J. Gen. Microbiol. 115, 69–77

26 Bremer, H. (1986) A stochastic process determines the time at
which cell division begins in Escherichia coli. J. Theor. Biol.
118, 351–365

27 Kerszberg, M. and Changeux, J.P. (1994) A model for reading

morphogenetic gradients: autocatalysis and competition at
the gene level. Proc. Natl. Acad. Sci. U. S. A. 91, 5823–5827

28 Calkhoven, C.F. and Ab, G. (1996) Multiple steps in the
regulation of transcription-factor level and activity. 
Biochem. J. 317, 329–342

29 Wilkins, A.S. (1997) Canalization: a molecular genetic
perspective. BioEssays 19, 257–262

30 Cooke, J. et al. (1997) Evolutionary origins and maintenance
of redundant gene expression during metazoan development.
Trends Genet. 13, 360–364

31 Lerner, I.M. (1954) Genetic Homeostasis. Oliver and Boyd
32 Holland, P.W. et al. (1994) Gene duplications and the origins

of vertebrate development. Dev. Suppl. 125–133
33 Elsayed, E.A. (1996) Reliability Engineering. (Chapter 2)

Addison Wesley Longman
34 McAdams, H.H. and Arkin, A. (1998) Simulation of prokaryotic

genetic circuits. Annu. Rev. Biophys. Biomol. Struct. 27, 199–224
35 Wilkinson, H.A. et al. (1994) Reciprocal changes in expression

of the receptor lin-12 and its ligand lag-2 prior to commitment
in a C. elegans cell fate decision. Cell 79, 1187–1198

36 Woude, M.V.D. et al. (1996) Epigenetic phase variation of the
pap operon in Escherichia coli. Trends Microbiol. 4, 5–9

37 Robertson, B.D. (1992) Genetic variation in pathogenic
bacteria. Trends Genet. 8, 422–427

38 Putte, V.d.P. and Goosen, N. (1992) DNA inversions in phages
and bacteria. Trends Genet. 8, 457–462

39 Marrs, C.F. et al. (1988) Pilin-gene phase variation of
Moraxella bovis is caused by an inversion of the pilin genes. 
J. Bacteriol. 170, 3032–3039

40 Ptashne, M. (1992) A Genetic Switch: Phage λ and Higher
Organisms. Cell Press and Blackwell Scientific Publications

41 Shea, M.A. and Ackers, G.K. (1985) The OR control system of
bacteriophage lambda: A physical-chemical model for gene
regulation. J. Mol. Biol. 181, 211–230

The Internet section is a regular column of news and information about web resources for
researchers in genetics and development (pp. 81–82). 

Internet is compiled and edited with the help of: Steven Brenner (Department of Structural biology,
Stanford University, Fairchild D-109, Stanford, CA 94305-5400, USA; brenner@hyper.stanford.edu);
Fran Lewitter (Scientific Computing, Whitehead Institute for Biomedical Research, Nine Cambridge
Center, Cambridge, MA 02142-1479, USA; lewitter@wi.mit.edu); Laurie Iten (Department of
Biological Sciences, Purdue University, 1392 Lily W. lafayette, IN 47907-1392, USA;
laurie_iten@sdb.bio.purdue.edu).

If you would like to announce or publicize an Internet resource, please contact: tig@elsevier.co.uk

The dynamic stability of genetic networks arises in part
from redundancy but, importantly, is dependent on the ex-
tensive interlocking feedback loops incorporated within
network designs23,28. The stochastic lineage of the Caenorhab-
ditis elegans anchor cell (AC) is a particularly relevant
example. The development pattern varies randomly in dif-
ferent animals between two distinct lineages. In half the
animals, by chance, the AC is derived from the Z1 gonadal
precursor cell; in the other half, it is derived from the Z4
gonadal precursor. The final regulatory outcome, how-
ever, is not affected because regulatory feedback via inter-
cellular signaling involving the receptor lin-12 and its ligand
LAG-2 causes the alternative cell to become a ventral
uterus cell1,35. Thus, in this case, random developmental
lineage variation caused by molecular-level noise in the
regulatory circuit is dynamically compensated by cellular
level feedback. 

Conclusions
In summary, the consequences of molecular-level statistical
mechanics of nanoscale chemistry in cellular regulatory
mechanisms have pervasive effects. Random variations in
the performance of genetically coupled regulatory links

can be exploited beneficially to produce variability with
fitness advantages. However, more commonly, regulatory
determinism is necessary, particularly for complex meta-
zoans. For these organisms, pervasive redundancy in regu-
latory networks, as well as extensive feedback and other
network design features, are used to produce determinism.
This requirement for redundancy is thought to be a major
factor contributing to the large size of metazoan chromo-
somes. Because of the network robustness resulting from
redundancy, feedback and other design features, mu-
tations of genes within the network might have no pheno-
type, but might also have a probabilistic phenotype
exhibiting partial penetrance. Analysis and prediction of
effects of mutations within redundant genetic regulatory
networks requires reliability analysis of the regulatory net-
work design as a whole. 

Acknowledgements
We thank M.T. Fuller, S.K. Kim, R. Losick, A.M. Skalka
and L. Shapiro for their critical reading of the manuscript.
H.H.M. is supported by Office of Naval Research Grant
N00014-96-1-0564; A.A. is supported by the Department
of Energy.


